skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Hongxia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Physical experiments and numerical simulations have observed a remarkable stabilizing phenomenon: a background magnetic field stabilizes and dampens electrically conducting fluids. This paper intends to establish this phenomenon as a mathematically rigorous fact on a magnetohydrodynamic (MHD) system with anisotropic dissipation in$$\mathbb R^3$$ R 3 . The velocity equation in this system is the 3D Navier–Stokes equation with dissipation only in the$$x_1$$ x 1 -direction, while the magnetic field obeys the induction equation with magnetic diffusion in two horizontal directions. We establish that any perturbation near the background magnetic field (0, 1, 0) is globally stable in the Sobolev setting$$H^3({\mathbb {R}}^3)$$ H 3 ( R 3 ) . In addition, explicit decay rates in$$H^2({\mathbb {R}}^3)$$ H 2 ( R 3 ) are also obtained. For when there is no presence of a magnetic field, the 3D anisotropic Navier–Stokes equation is not well understood and the small data global well-posedness in$$\mathbb R^3$$ R 3 remains an intriguing open problem. This paper reveals the mechanism of how the magnetic field generates enhanced dissipation and helps to stabilize the fluid. 
    more » « less
  2. Free, publicly-accessible full text available January 21, 2026
  3. Abstract The three-dimensional incompressible magnetohydrodynamic (MHD) system with only vertical dissipation arises in the study of reconnecting plasmas. When the spatial domain is the whole space $$\mathbb R^3$$, the small data global well-posedness remains an extremely challenging open problem. The one-directional dissipation is simply not sufficient to control the nonlinearity in $$\mathbb R^3$$. This paper solves this open problem when the spatial domain is the strip $$\Omega := \mathbb R^2\times [0,1]$$ with Dirichlet boundary conditions. By invoking suitable Poincaré type inequalities and designing a multi-step scheme to separate the estimates of the horizontal and the vertical derivatives, we are able to establish the global well-posedness in the Sobolev setting $H^3$ as long as the initial horizontal derivatives are small. We impose no smallness condition on the vertical derivatives of the initial data. Furthermore, the $H^3$-norm of the solution is shown to decay exponentially in time. This exponential decay is surprising for a system with no horizontal dissipation. This large-time behavior reflects the smoothing and stabilizing phenomenon due to the interaction within the MHD system and with the boundary. 
    more » « less